翻訳と辞書
Words near each other
・ Hahn (surname)
・ Hahn Air
・ Hahn Air Base
・ Hahn Air Systems GmbH
・ Hahn am See
・ Hahn bei Marienberg
・ Hahn Brewery
・ Hahn Building
・ Hahn decomposition theorem
・ Hahn embedding theorem
・ Hahn Field Archeological District
・ Hahn Fire Apparatus
・ Hahn Horticulture Garden
・ Hahn Island
・ Hahn Lake
Hahn polynomials
・ Hahn Premium
・ Hahn Rowe
・ Hahn series
・ Hahn Super Dry
・ Hahn William Capps
・ Hahn's problem
・ Hahn, Missouri
・ Hahn, Rhineland-Palatinate
・ Hahn, Texas
・ Hahn/Cock
・ Hahnaman Township, Whiteside County, Illinois
・ Hahnaman, Illinois
・ Hahnbach
・ Hahnberg (Thuringian Highland)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hahn polynomials : ウィキペディア英語版
Hahn polynomials
In mathematics, the Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials, introduced by Pafnuty Chebyshev in 1875 and rediscovered by Wolfgang Hahn . The Hahn class is a name for special cases of Hahn polynomials, including Hahn polynomials, Meixner polynomials, Krawtchouk polynomials, and Charlier polynomials. Sometimes the Hahn class is taken to include limiting cases of these polynomials, in which case it also includes the classical orthogonal polynomials.
Hahn polynomials are defined in terms of generalized hypergeometric functions by
:Q_n(x;\alpha,\beta,N)= {}_3F_2(-n,-x,n+\alpha+\beta+1;\alpha+1,-N+1;1).\
give a detailed list of their properties.
Closely related polynomials include the dual Hahn polynomials ''R''''n''(''x'';γ,δ,''N''), the continuous Hahn polynomials ''p''''n''(''x'',''a'',''b'', , ), and the continuous dual Hahn polynomials ''S''''n''(''x'';''a'',''b'',''c''). These polynomials all have ''q''-analogs with an extra parameter ''q'', such as the q-Hahn polynomials ''Q''''n''(''x'';α,β, ''N'';''q''), and so on.
==Orthogonality==

:\sum_^ Q_n(x)Q_m(x)\rho(x)=\frac\delta_,

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hahn polynomials」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.